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ABSTRACT 
 

A technique is proposed for calculating belt transfers of drives of technological machines and aggregates, which 

consists in determining the tension of the belt branches, depending on the properties of its material and the design 

parameters of transmission in a stationary mode. The obtained analytical solutions allow in the future also 

establishing the dependence of the current tension of the belt branches on the initial tension of the belt, the speed of 

rotation and the transmission mechanism and the resistance force on the drive shaft. The proposed technique is 

demonstrated by examining one of the particular cases of the geometric arrangement in the plane of motion of the 

belt transmission elements. 
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I. INTRODUCTION 

 

In technological machines and machine units (MU), due 

to the specificity of a particular process, the working 

and executive bodies are more often subjected to 

vibration loads [1] and [2]. Moreover, in a number of 

cases, the sources of vibration can become not only the 

processes of interaction of working organs with the 

object being processed, but also the mechanisms of the 

drives of the machines themselves. In these cases, with 

the help of one of the drive mechanisms, vibrations are 

artificially created to communicate them to the MU 

workers in order to increase the efficiency of 

technological processes [3]. For example, in the MU 

textile industry there have been attempts to apply belt 

gears with variable gear ratios, which are performed by 

eccentric pulleys or tension rollers [4], [5]. Due to this, 

the vibrating movements are communicated to the 

working body of the machine, and thus the effectiveness 

of its interaction with the material being processed (in 

this case, raw cotton) is increased [4]. The same effect is 

obtained, for example, in the application of belt gears 

with variable gear ratio in the drives of machines for 

crushing stones (rock crushers) in the mining and road 

construction industry where, due to vibrations reported 

from the drive to the working member, the crushing 

process will be more productive, [6] and [7]. In this 

regard, belt drives, which are an integral part of the 

high-speed drives of many technological MUs, taking 

into account the prospects of their application for the 

implementation of various additional functions, require 

further improvement of the methods of their calculation 

[8], [9]. 

 

As is known, modern computational methods and 

computer technologies allow the most accurate solution 

of a wide range of boundary value problems by 

numerical methods. However, for comparison, the 

qualitative and quantitative estimation of the error in the 

results of numerical calculations of physically and 

geometrically nonlinear problems, taking into account 

the flexibility and deformation of the material, requires 

analytical solutions for at least the simplest test cases 

and the most accurate values of unknown parameters at 

the boundaries of the region or discontinuity. 

 

II. PROBLEM STATEMENT AND THE 

RESEARCH PURPOSE 

 
The task of ensuring reliability, durability and 

increasing the service life of the transmission belt in a 

new setting can be taken as the definition of rational 

values of external loads, design parameters in which the 

tension of the branches of the belt transmission at each 

time will be distributed more evenly and remain within 

the allowable for the corresponding material of the belt . 

The solution of such a problem could be obtained if we 

apply the method of conditional rotation of the 

transmission mechanism in a stationary mode, where the 

values of the time constant of the tension and the speed 

of movement of the belt branches are within their 
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acceptable values. Meanwhile, it is obvious that it is 

difficult and practically impossible to ensure rotation of 

the transmission mechanism in a stationary mode for a 

long period of time. Therefore, in theoretical and 

practical studies, one can speak only about small or 

infinitesimal time intervals, within which the 

mechanism rotates in stationary modes, having in each 

individual piece of time piecewise constant values of 

tension within the permissible limits [10], [11]. 

 

The purpose of the research is to demonstrate, on the 

example of considering one of the special cases of the 

geometrical arrangement in the plane of motion of the 

belt transmission elements, a new technique for 

determining the tension of the belt branches, depending 

on the properties of its material and the design 

parameters of transmission in a stationary mode. 

 

The assumed assumption of the stationary mode of 

rotation of the transmission mechanism is based on the 

possibilities of dividing the operation time of specific 

machines into small or infinitely small segments in 

which the mechanism can rotate at constant speeds and 

tensions. However, it is difficult to find any real 

explanations for the assumption that the belt material is 

not extensible, especially with sufficiently large static 

and dynamic loads. This assumption is based on the fact 

that during the operation of the transmission 

mechanisms, the belts are relatively slightly stretched 

(relative deformations within ( 02.001.0  )).  

 

III. DEVELOPMENT OF THE METHODOLOGY 

AND DISCUSSION OF THE RESULTS 

 
As an object of study, consider a special case of a 

belt drive consisting of three pulleys, when the 

second pulley is located to the left of the first and 

third pulleys (Fig. 1). The carried out theoretical 

and numerical and experimental studies have 

shown that in this case the belt movement patterns, 

the forces acting on the belt and the distribution of 

belt tension substantially differ from other cases 

For example, consider a case that satisfies the 

condition). 31 dd   (Fig.1). 

Start the coordinate system ),( yx  in the center 1o  

of the first pulley. The axis y  passes through the 

centers of the first and third pulleys, and the axis x  

- perpendicular to the latter. 

 
Figure 1. General scheme of the mechanism of belt 

drive with three pulleys 

 

In the case under consideration, the angle 1  depends 

on the transverse dimensions of the first and third 

pulleys. An increase in the diameter of the first pulley 

leads to a decrease in the angle 1 , and an increase in the 

diameter of the third pulley - on the contrary, leads to an 

increase in this angle. 

The values of the angles 2  and 3  depend on the 

transverse dimensions of all the pulleys and the location 

of the second pulley ( 2x , 2y )  in the (х, у) plane: 

- An increase in diameter d1 leads to an increase in the 

angle 2 ; 

- An increase in the diameter d2 leads to a decrease in 

the angles 2  and 3 ; 

- A decrease in the coordinate 2x  at 2y = сonst leads to a 

decrease in the angles 2   

and 3; 

- An increase in the coordinate 2y  at 2x =сonst leads to 

an increase in the angle 3  and the decrease in angle 2 . 

The force scheme on the surfaces of the first, a second 

and third pulley is shown in Fig. 2, 3 and 4 respectively. 

Forces 1R  and 3R  and the vertical axis y  form angles 

1  and 3  respectively (Fig. 2), (Fig. 4): 

22
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The force 2R  depending on the angles 2  and 3  can 

form a positive or negative angle 3 with the axis x  (Fig. 

3 (а), (b)) 
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Figure 2. The scheme of the forces on the surface of 

the first pulley 

a) 

 
b) 

 
Figure 3. The scheme of forces on the surface of the 

second pulley 

 

Kinematic conditions - conditions of continuity of 

motion on the surface of pulleys take the form: 

111 cos dsdtx 
, 111 sin dsdty 

, 

222 cos dsdtx 
, 222 sin dsdty 

, 

333 cos dsdtx 
, 

333 sin dsdty 
, 

 
where minus signs mean that the directions of the 

velocities 


1x , 

3x  and 


1y  are opposite to the directions 

of the horizontal and vertical axes, respectively. 

 

Equations of the law of conservation of momentum 

have the form: 

- on the surface of the first pulley 

  dt
PfR

RTT
xxdsF 




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
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
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coscoscos
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 , 

  dt
PfR

RTT
yydsF 












 
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21111
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
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 ; 

- on the surface of the second pulley 

  dt
PfR

RTT
xxdsF 







 
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2222
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
, 

  dt
PfR
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
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2222
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 ; 

- на on the surface of the third pulley  

  dt
PfR

RTT
xxdsF 


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  dt
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
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3333
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where the upper signs are taken when the force 2R is 

directed, as shown in Fig. 3 (a), and the lower ones in 

Fig. 3 (б), 
11

2



  ,   2 = 2,   33

2



  . 

 
Figure 4. The scheme of the forces acting on the 

surface of the third pulley 
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The Riemann integrals have the form: 

      101 au  ,  202 au  ,   303 au  . 

The equations of the law of conservation of momentum are 

reduced to the form: 
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or 
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where 

2
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R
R i

i
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
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2
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ˆ
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P
P i

i




,   3,2,1i , 

1111 sincos   f ,   1112 cossin   f ,  

2221 sincos  f ,  2222 cossin  f ,   

3331 sincos  f ,  
3332 cossin  f .  

Equations (1) ÷ (6) can be reduced to the form 
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where  
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, 
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. 

Excluding unknown reactive forces, we obtain           
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Substituting 0001  ,  0002  ,  0003   we will 

have 
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Substituting these notations, the equations under 

consideration can be reduced to the form  
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   33331132 )1(   .                          (9) 

From the equations (7) and (9) we find 
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
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
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1323
3







 , 

where 

     33133   ,    11111   . 

Then, taking into account the last expressions, the 

equation of the system under consideration takes the 

form 

     

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From here 
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or 
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12332112322

2

120 )(  b . 

Let us now consider the motion of an inextensible belt. 

In this case, the equations of the law of conservation of 

momentum have the form  

      dt
PfRR

TT
xxdsF 
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 

dt
PfR

RTT

xxdsF















 

03030303

030303030101

0103030303

sinsin

coscoscos







, 

  

 

dt
PfR

RTT

yydsF















 

03030303

030303030101

0103030303

coscos

sinsinsin







,

 

or 
                                                

1110102020101 coscos ARTT   ,           (10) 

                                                      

2120102020101 sinsin ARTT   ,            (11) 

                                           

1210203030202 coscos BRTT   ,            (12)    

                                                      

2220203030202 sinsin BRTT   ,           (13) 

                                                      

1310303030101 coscos CRTT   ,      (14)   

                                                       

2320303030101 sinsin CRTT   ,      (15) 

where   

  010102010200001 coscoscos  PuFA  , 

  01010201

2

000002 sinsinsin  PuFA  , 
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2

000001 sincoscos  PuFB  , 
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2
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2
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   03030301

2

000002 cossinsin  PuFC  , 

Coefficients 
ij  are retained in the same form, where 

3,2,1, ji . 

 

Eliminating the unknown reactive forces, we represent 

the equations (10) ÷ (15) in the form 
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From here 

ATT  12021101  ,  BTT  22032102  ,      

                 CTT  32033101  ,                 (16) 

where 
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312321  CCC  . 

 

Equations (16) have a solution  
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Unknown reactive forces are determined from equations 

(10) ÷ (15)  
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The conditions for the balance of the belt are obtained 

from the equation of the law of conservation of 

momentum: 
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Excluding unknown reactive forces, we find 
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where  

0010011 sin PM  ,    0010012 cosPM  ;     

0020021 sin PN  ,    0020022 cosPN  ; 

 0030031 sin PK  ,      0030032 cosPK  , 

 112121  MMM  ,  212221  NNN  ,   

                    312321  KKK  . 

 

Equations (16) and (17) ÷ (19) can be represented in the 

form 

    
MTT  1200211001  ,   NTT  2200321002  ,  

                       KTT  3200331001  ,         (20)    

where       
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  003310033232 sincos   . 

    

Equations (20) have a solution  
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Unknown reactive forces are determined from equations 

(17) ÷ (19): 
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IV.  CONCLUSIONS 
         
The obtained analytical solutions can be used: 

 

 When adjusting and assembling the mechanisms of 

belt drives of machines; 

 When designing new and upgrading existing 

transmission mechanisms; 

 When predicting the causes of various inaccuracies 

and deficiencies in the work of the belt transmission 

mechanism and developing measures to eliminate 

them; 

 for comparison and evaluation of the results of 

approximate solutions of various dynamic problems 

of mechanisms with flexible connections in a more 

general setting (belt drives, belt conveyors, hoisting 

mechanisms of hoisting devices, etc.), taking into 

account the real physical and mechanical properties 

of their material, effects on the transmission 

mechanism. 
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